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Cluster hybrid Monte Carlo simulation algorithms
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We show that addition of Metropolis single spin flips to the Wolff cluster-flipping Monte Carlo procedure
leads to a dramatic increase in performance for the spin-1/2 Ising model. We also show that adding Wolff
cluster flipping to the Metropolis or heat bath algorithms in systems where just cluster flipping is not imme-
diately obvious~such as the spin-3/2 Ising model! can substantially reduce the statistical errors of the simu-
lations. A further advantage of these methods is that systematic errors introduced by the use of imperfect
random-number generation may be largely healed by hybridizing single spin flips with cluster flipping.
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I. INTRODUCTION

The potential resolution of Monte Carlo~MC! computer
simulations has increased substantially over the past
years@1,2#. This has been due, in part, to the dramatic rise
the performance of computers, but, more importantly, to
development of more powerful data analysis and comp
simulation techniques@3#. Histogram methods allow us t
extract much more information from simulation data th
was previously possible@3,4#. By providing the ability to
continuously vary the temperature or other intensive par
eters of a simulation, these techniques have greatly sim
fied the analysis of simulation data by traditional means a
in addition, have also played an important role in the dev
opment of new methods of analyzing simulation data@5–7#.
These methods are most effective when very large num
of spin configurations have been generated, and it is the c
mon belief that the number needed is enlarged by corr
tions between successive states@8,9#. More recently, a new
generation of algorithms to calculate the density of sta
accurately via a random walk in energy space have b
devised for producing canonical averages of thermodyna
cal quantities at essentially any temperature@10,11#. Simula-
tion techniques have also improved immensely. Fast im
mentations of local update~Metropolis@12#! algorithms have
been developed for a variety of models, while clust
flipping algorithms@3,13,14#, which can dramatically reduc
the correlation time in a simulation, now exist for seve
classes of models.

A different approach to increasing the performance
computer simulations is to combine several different al
rithms into a single, hybrid algorithm. This idea is not ne
hybrid Monte Carlo@15#, hybrid molecular dynamics@16#,
Metropolis with overrelaxation @17,18#, and Multihit
Swendsen-Wang@19# are some examples of hybrid algo
rithms. In these cases, however, the two algorithms that
combined perform the simulation in different ensembles,
ther canonical/microcanonical or canonical/fixed-cluster d
tribution. The approach we consider here is to combine
gorithms that work in the same ensemble, for our examp
the canonical ensemble, so that each of the individual c
ponent algorithms is a self-sufficient simulation techniq
1063-651X/2002/65~6!/066702~8!/$20.00 65 0667
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This eliminates any concerns about how the mixing of e
sembles could potentially affect the quality or correctness
the results. We will, however, discuss the generalization
these ‘‘proper’’ hybrid algorithms to include mixed-ensemb
cases.

Our aim in this work is twofold. We first discuss, in th
following section, the efficiency of a general hybrid alg
rithm and show how it can be improved in the case wh
Wolff plus Metropolis is applied to the spin-1/2 two
dimensional Ising model. Second, in Sec. III, we apply
hybrid algorithm to the spin-3/2 two-dimensional Isin
model for which a correct single cluster algorithm is n
immediately obvious since the simple version does not t
into account transitions between states having different s
moduli ~for instance, transitions between63/2 and 61/2
spin values!. Further discussion and some concluding
marks are given in the last section.

II. GENERAL HYBRID ALGORITHM: SPIN-1 Õ2 ISING
MODEL

Consider a MC study of some model in whichN measure-
ments of some observable quantityA ~energy, magnetization
susceptibility, cumulants, etc.! are made, and for which ther
exist several different algorithms that could be used to p
form the simulation. In order to compare the efficiency of t
different techniques, one needs to know both the speed
which measurements are made and the degree to which
cessive measurements are correlated@8#. For this section, we
will define the efficiencye for an algorithm as

e5
~Number of measurements generated per second!

2tA11
,

where the integrated autocorrelation timetA is given by

tA5 (
t51

t5N S 12
t

NDfA~ t !,

with the time-displaced correlation functionfA(t) for the
quantityA calculated as
©2002 The American Physical Society02-1
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fA~ t !5
^A~0!A~ t !&2^A&2

^A2&2^A&2 .

Note that the correlation time, and therefore the efficiency
an algorithm, can depend strongly on the particular quan
A measured.

Now consider a hybrid simulation algorithm that com
bines several different component algorithms. To set up so
notation, leta represent the number of different algorithm
used,Ni the number of measurements made with simulat
techniquei andt i the time~in seconds! required for perform-
ing the update and making a measurement for techniqui.
This time will, of course, depend strongly on the impleme
tation of the algorithms and the particular computers
which they are run.

The time in seconds needed to produce a measurem
using the hybrid algorithm is

(
i 51

a

Ni t i

(
i 51

a

Ni

,

so that the efficiency of the hybrid algorithm becomes

e5

(
i 51

a

Ni

~2tA11!3S (
i 51

a

Ni t i D .

Please note that the correlation time, and therefore the
ciency, of the algorithm will depend on its specific impl
mentation. For example, in a hybrid algorithm consisting
two components, 1 and 2, the correlation time for the
quence 122122122122 . . . would, most likely, be different
from the sequence 112222112222 . . . . Which of the two
would produce the smaller correlation time would depend
the dynamics~kinetics! of the individual algorithms.

We now demonstrate the development of the above hy
algorithms by considering a specific example, the spin -
nearest-neighbor square-lattice Ising model at its crit
temperatureTc . The Ising model has traditionally been us
to test new simulation algorithms and data analysis te
niques because of its simplicity and the exact finite- a
infinite-system solutions in the two-dimensional mod
@20,21#. Because of the large amount of work done with t
Ising model, there exist several different simulation alg
rithms for it. These can be broken up into two major class
~1! single-spin update algorithms, including Metropolis, he
bath, and microcanonical algorithms, and~2! cluster algo-
rithms, including the Swendsen-Wang@13# and Wolff algo-
rithms @14#. We will concentrate on two of these algorithm
@22#: Metropolis @12# and Wolff @14#.

Each of these algorithms has its strengths and we
nesses. The Metropolis algorithm is very efficient at equ
brating short-range fluctuations in the system, and there e
highly optimized multispin coding implementations of th
06670
f
ty

e

n

-
n

nt

fi-

f
-

n

id
2
l

-
d
l

-
s:
t

k-
-
ist

Metropolis algorithm @23#. Unfortunately, the Metropolis
method is not efficient at decorrelating the long-range cl
ters that characterize the behavior of the system near
critical point. The Wolff algorithm, on the other hand, co
centrates its effort on the large clusters leading to gre
reduced correlation times and a much smaller dynamic c
cal exponentz. However, smaller-scale structures in the sy
tem, in particular regions of disorder, are not handled e
ciently by the Wolff algorithm. The speed of the Wol
algorithm, based on the number of spins updated per sec
is also lower for Wolff than for multispin coding implemen
tations of Metropolis. Because of the Wolff algorithm
smaller dynamic exponent, it is clear that it will becom
more efficient than Metropolis for sufficiently large lattice
however, ‘‘sufficiently large’’ might well be larger than th
range of sizes of interest in a particular study. Work by
and Kohring @24# estimates that Metropolis remains mo
efficient than Wolff, in terms of independent measureme
per second, for system sizes as large asL570 in two dimen-
sions andL5100 in three dimensions~running on a scalar
workstation!. This is, of course, strongly dependent on t
type of computer and the particular implementation of t
algorithms used. For example, with the programs, al
rithms, and computers used in this study, we estimate
Wolff becomes more efficient than Metropolis forL'32 for
d52 andL'16 for d53.

Another concern with the Wolff algorithm is its sensitivit
to flaws in the random number generator used in the sim
tion. Small but significant systematic deviations from the e
actly known answer in thed52 Ising model and other sys
tems have been reported and investigated@25–32# using a
variety of popular random-number generators@33–36#.
While the results of any simulation method can be biased
subtle correlations in the random numbers@37#, the Wolff
algorithm was found to be particularly susceptible. Desp
these concerns about the Wolff algorithm, the dramatic
duction in the correlation time is a very tantalizing effect.
the speed and efficiency at equilibrating small-scale str
tures of the Metropolis algorithm is combined with th
strength in decorrelating large-scale structures of the W
algorithm, the resulting hybrid algorithm could, in fact, b
more efficient than either Metropolis or Wolff individually.

To test this possibility, we implemented a scalar hyb
algorithm that combines the Metropolis and Wolff alg
rithms. Simulations were performed on IBM RISC/600
DEC Alpha, PC Linux, and SGI power challenge works
tions. The spins were stored as bit variables, with up to
spin variables packed into a single computer word@23#. Note
that the Metropolis algorithm can take advantage of t
packing arrangement by effectively updating many spins
parallel using multispin coding techniques. This will result
substantial improvement in performance for increasing s
tem size until all 32 bits are filled~for L>64 in this imple-
mentation!. While the Wolff algorithm cannot make full us
of the multispin coding, it does benefit from the small
memory requirements of the packed-spin representat
~Smaller memory means that more of the system can
stored in the computer’s cache memory, which results
much better performance.!
2-2
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CLUSTER HYBRID MONTE CARLO SIMULATION ALGORITHMS PHYSICAL REVIEW E65 066702
The random-number generators used for the simula
must be chosen with great care, especially for the Wolff
gorithm @27#. After performing extensive tests of sever
generators, we selected the following as being the fas
random-number generators that would give us the cor
answer within the precision of our testing. For the Wo
algorithm, we used a combination generator by l’Ecuyer@38#
that was recommended as a ‘‘perfect’’ random number g
erator in the numerical recipes column in computers in Ph
ics @39#. With this program, we can produce a random nu
ber in 840.2 nsec on an SGI power challenge worksta
with a 194-MHz R10000 processor. For the Metropolis p
of the simulation, we used a faster, shift-register genera
R1279, which can produce a random number in 21.4 n
@40#.

To see how the hybrid algorithm behaves when poor r
dom numbers are used, we ran a series of simulations d
erately using a bad random-number generator for the W
algorithm. We thus used the R250 shift-register genera
@35# which is known to introduce significant systematic e
rors for thed52 Ising model@27#. We performed hybrid
updates consisting of one Wolff update followed by 0, 1,
3, and 4 Metropolis updates.~A simulation consisting of only
Metropolis was also performed for completeness.! For each
hybrid, 16 independent simulations consisting of 33106 hy-
brid steps were performed. The results forL516 are shown
in Fig. 1 for the energy and specific heat. For the inter
energy the Wolff algorithm yields the wrong answer by
amount that is more than 35 times the calculated error
With the inclusion of 50% of Metropolis flips this error i
reduced by a factor of 10, and with 80% Metropolis flips,
discernible error is seen. Very much the same behavio
seen in the specific heat, although the rate of convergenc
the correct answer is slightly different.

Not only are the results more correct if the different fli
ping mechanisms are mixed, but the performance is also

FIG. 1. Dependence of the estimate of the internal energyE per
particle in units of the exchange interactionJ ~circles! and the spe-
cific heatc in units ofkB /J2 ~squares! with the fraction of Metropo-
lis spin flips. Results shown are for thed52 spin-1/2 Ising model
on anL3L square lattice withL516 atT5Tc . The dashed lines
represent the exact solution.
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proved. For the magnetization the relative efficiency of t
hybrid algorithm, with~50–80! % Metropolis flips added, is
about 30% greater than for Wolff alone, as can be seen f
Fig. 2. It is surprising that even forL564, where the Me-
tropolis algorithm is much less efficient than the Wolff alg
rithm, the hybrid is significantly more efficient. Although fo
pure Metropolis, the relative performance becomes marke
worse as the lattice size increases, the same is not true fo
hybrid algorithm. For the internal energy the relative ef
ciency, also shown in Fig. 2, is much better still for th
hybrid algorithm, by more than a factor of 2.

III. HYBRID ALGORITHM: SPIN-3 Õ2 ISING MODEL

For models with higher values of spin, not only are Mon
Carlo simulations, as well as specific algorithms, less ub
uitous than for their two-state counterpart, but no exact
lution is still available for their critical temperatures. Thu
the basic ideas of the last section need to be extende
more general models, e.g., the spin-3/2 Ising model, wh
each spin state can assume values63/2, 61/2. Although
some spin-1@41–45# and spin-3/2@46–50# models have al-
ready been studied through Metropolis technique and clu
spin flipping@51#, there is still a lack of a detailed analysis o
the statistical and systematic errors even in the simple Is
limit. So, before starting to implement a hybrid algorithm
this model it is interesting to see first what one gets w
single-spin flipping procedures.

To analyze the statistical errors of some observable th
modynamic quantityA, we first applied just the Metropolis
algorithm to the spin-3/2 Ising model. We ran 6.023106

Monte Carlo steps~MCS! per spin with 23104 configura-
tions discarded for thermalization on different lattice siz

FIG. 2. Variation of the relative efficiency~compared to pure
Wolff ! of the hybrid algorithm as measured from the results for
magnetizationM ~filled symbols! and for the energyE ~open sym-
bols! with the fraction of Metropolis spin flips for different lattice
sizes. Results shown are for thed52 spin-1/2 Ising model atT
5Tc on L3L lattices. Where not shown, the error bars are sma
than the symbol size.
2-3
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J. A. PLASCAK, ALAN M. FERRENBERG, AND D. P. LANDAU PHYSICAL REVIEW E65 066702
L(8<L<128) and using the ‘‘perfect’’ random-number ge
erator @38#. We measured the energyE, magnetizationM,
fourth-order cumulant of the magnetizationU, and the quad-
rupole momentQ ~the mean value of the square of the spin!.
Typical results of the relative errorDA/^A& for different lat-
tice sizesL are shown in Fig. 3 att5kBT/J53.29, a value
close to the critical temperature. Using ‘‘coarse graining’’@1#
we have estimatedDA through

~DA!25~^A2&2^A&2!/N,

for large enoughN, where we divided our data intoN
5(MCS)/n bins of different lengthsn (n ranging from 5 to
105). The relative error in the magnetization and its cumul
increases asL increases while for the energy and the qua
rupole moment it stays almost constant. In terms of differ
degrees of self-averaging,M and U are non-self-averaging
while E andQ exhibit a lack of self-averaging~the number
of ‘‘effectively’’ independent measurements through t
computation of the correlation timet is certainly necessary
@8# for a more detailed analysis of the errors. This is, ho
ever, outside the scope of the present work!. We have also
noted no significant changes in the errors by using differ
random-number generators, even taking the poorer con
ential one, and the data are also depicted in Fig. 3. Figu
shows the results of the magnetization cumulantU as a func-
tion of temperature for different MCS for the lattice sizeL
5128. Here, we have used the histogram technique ato
53.29 in order to obtain estimates for other values of te
peratures close toto . It is worthwhile to analyze such behav
ior since we will use the crossings of the cumulantsU to
locate the critical temperature of the present model. Bes
having large error bars one can see that the mean value o
cumulant is strongly dependent on the number of MCS u
to obtain the statistics. The dependence with the numbe

FIG. 3. Relative error of the magnetizationM, its cumulantU,
energyE, and quadrupoleQ as a function of lattice sizeL for the
d52 spin-3/2 Ising model. Filled symbols were taken with t
‘‘perfect’’ random-number generator@38#, while the empty ones
with the congruential generator. Full lines and dashed lines a
guide to the eyes.
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states generated for this lattice size is more pronounced
using the ‘‘perfect’’ random generator~note that the mean
values ofU with 63106 MCS and ‘‘perfect’’ generator are
comparable to those with 33106 MCS and the congruentia
one! although both converge to the same limit as the num
of MCS gets very large. Within the error bars we also not
almost no systematic error due to the use of differ
random-number generators, in contrast to the case of
Wolff algorithm which, with a bad random-number genera
for the spin-1/2 model, gives wrong results for the ene
and specific heat~see Fig. 1!. The same qualitative behavio
of Fig. 4 ~large error bars and a strong dependence of
cumulant with the number of MCS! is also seen for othe
lattice sizesL. Even by substantially increasing the MCS p
spin one still gets large errors, mainly for the magnetizat
and its cumulant~see also Fig. 3!.

We show in Fig. 5 the reduced pseudocritical temperat
tc as a function ofL21 ~in fact L21/n, wheren51 for the
two-dimensional Ising universality class! obtained from the
crossings of the fourth-order cumulant of the magnetizat
for different values ofL using just the Metropolis algorithm
Each point in that figure represents the crossing point of
cumulantUL of the lattice size 16<L<128 with the corre-
sponding cumulant of the smallest latticeU8. Only a poor
estimate of the critical reduced temperature can be achie
in this case, which can be ascribed to the large error b
obtained in computingUL as well as its strong dependenc

a

FIG. 4. Magnetization cumulantU as a function of reduced
temperaturet for the d52 spin-3/2 Ising model withL5128. All
data were obtained from histograms taken att53.29 ~close to the
critical temperature!. The numbers in the legends stand for MC
Open squares and open diamonds are the results for Metropolis
congruential random-number generator~ME-C!. Full squares and
full diamonds are the results with the ‘‘perfect’’ generator~ME-P!.
Open circles and full circles are the results for the hybrid algorit
with five Wolff steps using the congruential~H5-C! and perfect
~H5-P! generators, respectively~these data are almost collapse
within the resolution of this figure!. The magnitudes of the erro
bars with the Metropolis algorithm for 33106 and 63106 MCS are
indicated. For the hybrid algorithm the errors are much smaller t
the corresponding symbol sizes.
2-4
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CLUSTER HYBRID MONTE CARLO SIMULATION ALGORITHMS PHYSICAL REVIEW E65 066702
on the number of MCS taken in the statistics. In particu
we havetc53.288(1) with perfect andtc53.287(1) with
congruential random-number generators which are, even
comparable to the more recent series expansion resutc
53.2878(22)@52#. We can see that, in general, no systema
error due to random-number generator is observed for
Metropolis algorithm. Moreover, within the error bars, ve
similar results are also obtained by running the symme
heat bath single spin-flip procedure.

It is clear that one way to improve the accuracy of t
location of the critical temperature with Metropolis can
done by increasing the MCS in order to achieve better
tistics. This will require, of course, much more compu
time, mainly for large lattice sizes. We can, however, use
results of the preceding section in order to construct a hy
algorithm where, with not much extra computer time, mo
precise results could be obtained. The first step is thu
implement a Wolff algorithm for this model. In a straightfo
ward way, this implementation can be done by activat
bonds between parallel nearest-neighbors spinsSi andSj ac-
cording to the probabilityp(Ki j )512exp(22KijSiSj) and,
when the full cluster has been activated, all its spins
reversed. This procedure has, however, two main differen
regarding the spin-1/2 systems that we have to keep in m
~i! now, the probabilityp(Ki j ) depends on the particular con
figuration of the parallel spins and can have three possi

ties, depending on whether$SiSj% are$ 3
2

3
2 %, $ 3

2
1
2 %, and$ 1

2
1
2 %

~and also the corresponding reversed configurations!; ~ii ! this
procedure alone is not ergodic in the sense that it does
take into account transitions between spin states with dif
ent spin magnitudes~it keeps fixed the number of6 3

2 and
6 1

2 spins in each configuration and, for instance, the qu
rupole Q5( iSi

2 is always a constant!. While the former is

FIG. 5. Pseudocritical temperaturetc as a function of the inverse
of lattice sizeL21. Results are obtained from the crossings of t
fourth-order cumulant of the magnetization using just the Metro
lis algorithm with differentL for the d52 spin-3/2 Ising model.
Circles are the results with perfect random generator~ME-P! and
squares with congruential~ME-C!. For clarity, the errors in the
congruential data are not shown~they are, however, of the sam
order as in the perfect case!.
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just a generalization of the bond probabilities activation
systems with more degrees of freedom, the latter is real
problem since we can not generate all possible configu
tions for the model. A mixed cluster algorithm has alrea
been proposed to overcome such a nonergodicity in the
of the spin-1 Blume-Emery-Griffths model@51#. However, a
natural hybridization procedure, based on the discussion
the last section, and also from embedding algorithms@53#
proposed to study of spin-1 models@44# can be worked out
here by simply alternating one Metropolis sweep withp
Wolff steps wherep, in principle, can depend on the syste
size. The inclusion of alternate single-spin-flip sweeps w
make this hybrid algorithm ergodic and much simpler tha
possible generalization of the mixed cluster procedure to
present spin-3/2 model. In order to test the efficiency of t
hybrid algorithm we have done extensive simulations for
L54 lattice where we can compare the results of the sim
lations with the exact ones. We ran a total of 1.23107 hybrid
MCS per spins each one includingp Wolffs intercalated by
one Metropolis sweep. The results are shown in Fig. 6 for
perfect random generator. One can readily see that all
results are in general compatible to the exact ones within
error bars. However, by including some Wolff steps the me
values initially oscillate for smallp, have a better agreemen
for p;5 and finally deviate for largep. We also note that the
errors are almost the same forp50 and p59 and are
slightly smaller aroundp;5. The slight deviation of the er
ror as a function ofp reflects the fact that we have a reaso
able number of MCS per spin to obtain a good statistics
this small lattice, even with just the Metropolis algorith
~this is not the case for larger values ofL, as we shall see
below!. Moreover, the worse results for large values ofp can
be ascribed to the nonergodicity of the present simple W
algorithm ~nothing is gained by increasing the number
Wolff steps since we get stuck in the configurations hav
the same number of6 3

2 and6 1
2 spins!. The overall picture

then suggests the use of this hybrid algorithm withp;5
~althoughp can also vary withL). In order to test this as-

-

FIG. 6. Magnetization M /Mo , energy E/Eo , quadrupole
Q/Qo , and magnetization cumulantU as a function of Wolffp
steps for theL54 lattice att53.0. Mo , Eo , andQo are the cor-
responding saturated values att50. Results are for thed52 spin-
3/2 Ising model. The dashed line represents the exact solution
2-5
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J. A. PLASCAK, ALAN M. FERRENBERG, AND D. P. LANDAU PHYSICAL REVIEW E65 066702
sumption we applied this procedure to theL5128 lattice
~and close to the critical temperature! and obtained the mag
netization cumulantU with five Wolff steps. The correspond
ing results are also shown in Fig. 4. There is, in this case
sensitive difference in the data by taking 33106 or 63106

MCS with the hybrid algorithm. Surprisingly, the statistic
errors are now almost two orders of magnitude smaller t
those with just the Metropolis algorithm~the errors in Fig. 4

FIG. 7. Relative error as a function of lattice size for the ma
netization M ~squares!, its cumulantU ~circles!, energyE ~dia-
monds!, and quadrupoleQ ~triangles! with the hybrid algorithm and
p55. Filled symbols have been obtained by using the congruen
generator, and open symbols by using the perfect one in thed52
spin-3/2 Ising model. The lines are a guide for the eyes.

FIG. 8. Pseudocritical temperaturetc as a function of the inverse
of lattice size obtained from the crossings of the fourth-order
mulant of the magnetization with differentL. The three sets of the
filled symbols have been obtained according to the hybrid algori
with perfect random number generator by considering the cross
of U24<L<128 with U8 , U12, andU16, respectively. The three set
of open symbols have been obtained according to the hybrid a
rithm with congruential random-number generator by consider
the crossings ofU24<L<192 with U8 , U12, andU16, respectively.
06670
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for L5128 are in fact much smaller than the symbol size!.
To get this same precision with only Metropolis one wou
have to compute an order of 108 configurations for this lat-
tice size. The relative error of the energy, magnetization
its cumulant, and the quadrupole for other values ofL are
shown in Fig. 7. While now they are almost constant forM
andU ~exhibiting lack of self-averaging!, they decrease forE
andQ ~behaving now as self-averaging quantities!. It is also
important to notice that the hybridization process is ag
almost insensitive to the quality of the random-number g
erator. The above results strongly indicatep55 as a good
trial also for other lattice sizes.

In Fig. 8 we present the reduced pseudocritical tempe
ture tc as a function ofL21 obtained from the hybrid algo
rithm described above with the perfect random genera
through the crossings of the fourth-order cumulant of
magnetizationUL . It was possible, in this case, to get a go
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FIG. 9. Estimate of the fourth-order cumulant value at the tr
sition U* . The straight line corresponds to a linear fit of the dat

FIG. 10. P* as a function ofboLb/nML at Tc for the spin-1/2,
-1, -3/2 Ising models with lattice sizeL532. The simulations have
been done at the exact value ofTc for spin-1/2,Tc51.6935 ob-
tained from series expansions for spin 1@54#, and our present resul
for spin 3/2.
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resolution from crossings of 24<L<128 with three different
smaller lattices, namely,U8 , U12, andU16. The quality of
the results are now apparent and yields the extrapol
value tc53.287 99(7). Just for completeness, in Fig. 8 w
also give the corresponding values by taking the congruen
generator with the present hybrid algorithm. As it is fast
we were able to use, with the same computing time, latti
as large asL5192 to gettc53.287 89(7). Wehave then, so
far, the best estimate for the critical temperature of the tw
dimensional spin-3/2 Ising model:tc53.287 94(7).

It is worthwhile now to address some comments regard
the universality of these models. Regardless the numbe
states each spin can assume, alld-dimensional systems are i
the same~Ising! universality class. This fact is apparent
Figs. 5 and 8,~mainly the latter one! where the temperature
are all along a straight line as a function ofL21/n with n
51 in two dimensions. However, two more universal qua
tities can be readily observed from the present simulatio
First, the magnetization fourth-order cumulantU* at the
transition temperature can also be estimated from our da
give U* .0.612(1), a value expected ford52 Ising systems
undergoing a second-order phase transition. This re
comes from Fig. 9 where each point was obtained by fixint
at our estimatetc and looking the cumulant there for differ
ent lattices. Second, a quantity that is studied less often
the probability distribution of the magnetizationML ,
P* (boLb/nML) which, for large enough systems at the cri
cal temperature is a universal function@55–57#. In this equa-
tion bo is a nonuniversal constant chosen to give a un
variance for the distributionP* . Figure 10 shows the fixed
point order parameter distribution for the two-dimension
Ising universality class obtained from models with spin 1
1, 3/2 at the critical temperature and lattice sizeL532. For
each model 107 steps were performed with Metropolis alg
rithm and using the R1279 random-number generator.
quality of this match clearly reveals the hallmark of theP*
distribution for the Ising universality class.

IV. DISCUSSION

The results shown in the previous sections supply str
support for the use of hybrid algorithms as a means of ef
tively speeding up simulations and also improving the qu
-
-
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ity of the results. Another advantage is that efficient, para
implementation of the hybrid algorithm on distribute
memory machines is straightforward. A Wolff process ru
ning on one processor can ‘‘feed’’ states to other process
that then perform multiple Metropolis updates. The numb
of Metropolis updates can be varied to maximize load b
ancing. Data are gathered together from all states that h
been generated and then used to construct histograms.
procedure can be enhanced still further by the inclusion
microcanonical updates that require no random numb
One hybrid update would then consist of, e.g., one Wo
update plus five Metropolis updates plus ten microcanon
updates.

Although we have described hybrid algorithms for one
the simplest models in statistical mechanics~Ising!, we be-
lieve that the lessons drawn from these studies will be m
broadly applicable. For example, continuous spin syste
may be~randomly! projected onto Ising models that can b
easily simulated using these hybrid algorithms. Histogr
analysis of the data can also be used in a similar fashio
produce extremely high resolution results. Of course,
relative performance of each component of the hybrid al
rithm will depend upon the specific model, so that ‘‘tuning
will be required for each study. Furthermore, these sin
ensemble hybrid methods can be combined with other a
rithms to further improve performance. For the Ising mod
the microcanonical method is extremely fast and can be
ily included. For a classical Heisenberg model, the over
laxation method provides an effective microcanonical sim
lation component to a hybrid algorithm.

In summary, we have demonstrated that hybrid Mo
Carlo spin-flip algorithms, which include ‘‘slower’’ Metropo
lis steps, can be made to be effectively faster than clus
flipping algorithms. Furthermore, and perhaps more sign
cantly, they yield substantially more accurate results th
does the simple Wolff algorithm~for the spin-1/2 model! or
single Metropolis algorithm because the alternation of upd
ing methods breaks up random-number correlations.
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