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We show that addition of Metropolis single spin flips to the Wolff cluster-flipping Monte Carlo procedure
leads to a dramatic increase in performance for the spin-1/2 Ising model. We also show that adding Wolff
cluster flipping to the Metropolis or heat bath algorithms in systems where just cluster flipping is not imme-
diately obvious(such as the spin-3/2 Ising modelan substantially reduce the statistical errors of the simu-
lations. A further advantage of these methods is that systematic errors introduced by the use of imperfect
random-number generation may be largely healed by hybridizing single spin flips with cluster flipping.
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[. INTRODUCTION This eliminates any concerns about how the mixing of en-
sembles could potentially affect the quality or correctness of
The potential resolution of Monte Carl®IC) computer the results. We will, however, discuss the generalization of
simulations has increased substantially over the past feWhese “proper” hybrid algorithms to include mixed-ensemble
years[1,2]. This has been due, in part, to the dramatic rise inCases.
the performance of Computers] but, more importantly, to the Our aim in this work is twofold. We first diSCUSS, in the
development of more powerful data analysis and computefollowing section, the efficiency of a general hybrid algo-
simulation technique$3]. Histogram methods allow us to fithm and show how it can be improved in the case when
extract much more information from simulation data thanWolff plus Metropolis is applied to the spin-1/2 two-
was previously possiblg3,4]. By providing the ability to ~dimensional Ising model. Second, in Sec. Ill, we apply a
continuously vary the temperature or other intensive parambybrid algorithm to the spin-3/2 two-dimensional lIsing
eters of a simulation, these techniques have greatly simplimodel for which a correct single cluster algorithm is not
fied the analysis of simulation data by traditional means andmmediately obvious since the simple version does not take
in addition, have also played an important role in the develinto account transitions between states having different spin
opment of new methods of analyzing simulation d&a7]. moduli (for instance, transitions betweeh3/2 and +1/2
These methods are most effective when very large numbef&in values Further discussion and some concluding re-
of spin configurations have been generated, and it is the confbarks are given in the last section.
mon belief that the number needed is enlarged by correla-
tions between successive stal8s9]. More recently, a new | GENERAL HYBRID ALGORITHM: SPIN-1 /2 ISING
generation of algorithms to calculate the density of states MODEL
accurately via a random walk in energy space have been
devised for producing canonical averages of thermodynami- Consider a MC study of some model in whiskmeasure-
cal quantities at essentially any temperafii@,11]. Simula- ments of some observable quantkyenergy, magnetization,
tion techniques have also improved immensely. Fast implesusceptibility, cumulants, ejcare made, and for which there
mentations of local updat@letropolis[12]) algorithms have exist several different algorithms that could be used to per-
been developed for a variety of models, while cluster-form the simulation. In order to compare the efficiency of the
flipping algorithms{3,13,14, which can dramatically reduce different techniques, one needs to know both the speed with
the correlation time in a simulation, now exist for severalWhich measurements are made and the degree to which suc-
classes of models. cessive measurements are correldagjdFor this section, we
A different approach to increasing the performance ofwill define the efficiencye for an algorithm as
computer simulations is to combine several different algo-
rithms into a single, hybrid algorithm. This idea is not new; ~_ (Number of measurements generated per second
hybrid Monte Carlo[15], hybrid molecular dynamicg16], e= 27p+1 '
Metropolis with overrelaxation[17,18, and Multihit
Swendsen-Wang19] are some examples of hybrid algo- where the integrated autocorrelation timgis given by
rithms. In these cases, however, the two algorithms that are
combined perform the simulation in different ensembles, ei- t=N
ther canonical/microcanonical or canonical/fixed-cluster dis- TA= D
tribution. The approach we consider here is to combine al- t=1
gorithms that work in the same ensemble, for our examples
the canonical ensemble, so that each of the individual comwith the time-displaced correlation functiopia(t) for the
ponent algorithms is a self-sufficient simulation technique quantity A calculated as
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(A(0)A(1))— (A)? Metropolis algorithm[23]. Unfortunately, the Metropolis
all)= (A2>—<A>2 : method is not efficient at decorrelating the long-range clus-
ters that characterize the behavior of the system near the
Note that the correlation time, and therefore the efficiency ofritical point. The Wolff algorithm, on the other hand, con-
an algorithm, can depend strongly on the particular quantitgentrates its effort on the large clusters leading to greatly
A measured. reduced correlation times and a much smaller dynamic criti-
Now consider a hybrid simulation algorithm that com- cal exponentz. However, smaller-scale structures in the sys-
bines several different component algorithms. To set up somgm, in particular regions of disorder, are not handled effi-
notation, leta represent the number of different algorithms ciently by the Wolff algorithm. The speed of the Wolff
used,N; the number of measurements made with simulatioralgorithm, based on the number of spins updated per second,
technique andt; the time(in secondsrequired for perform- is also lower for Wolff than for multispin coding implemen-
ing the update and making a measurement for technigue tations of Metropolis. Because of the Wolff algorithm’s
This time will, of course, depend strongly on the implemen-smaller dynamic exponent, it is clear that it will become
tation of the algorithms and the particular computers ommore efficient than Metropolis for sufficiently large lattices;

which they are run. however, “sufficiently large” might well be larger than the
The time in seconds needed to produce a measuremerdgnge of sizes of interest in a particular study. Work by Ito
using the hybrid algorithm is and Kohring[24] estimates that Metropolis remains more
A efficient than Wolff, in terms of independent measurements
E Nt per second, for system sizes as largé &s70 in two dimen-
e i sions andL =100 in three dimensiongunning on a scalar
3 , workstation. This is, of course, strongly dependent on the
Z N type of computer and the particular implementation of the
S algorithms used. For example, with the programs, algo-
rithms, and computers used in this study, we estimate that
so that the efficiency of the hybrid algorithm becomes Wolff becomes more efficient than Metropolis for=32 for
a d=2 andL~16 ford=3.
2 N Another concern with the Wolff algorithm is its sensitivity
= to flaws in the random number generator used in the simula-

3 . tion. Small but significant systematic deviations from the ex-
z N-t-) actly known answer in thed=2 Ising model and other sys-
= tems have been reported and investigdi2s-32 using a
variety of popular random-number generatdi33—36§.

Please note that the correlation time, and therefore the effiwhile the results of any simulation method can be biased by
ciency, of the algorithm will depend on its specific imple- subtle correlations in the random numb¢gy], the Wolff
mentation. For example, in a hybrid algorithm consisting ofalgorithm was found to be particularly susceptible. Despite
two components, 1 and 2, the correlation time for the sethese concerns about the Wolff algorithm, the dramatic re-
qguence 12212212222 .. would, most likely, be different duction in the correlation time is a very tantalizing effect. If
from the sequence 11222211222 . . Which of the two the speed and efficiency at equilibrating small-scale struc-
would produce the smaller correlation time would depend ortures of the Metropolis algorithm is combined with the
the dynamicgkineticy of the individual algorithms. strength in decorrelating large-scale structures of the Wolff

We now demonstrate the development of the above hybridlgorithm, the resulting hybrid algorithm could, in fact, be
algorithms by considering a specific example, the spin -1/2nore efficient than either Metropolis or Wolff individually.
nearest-neighbor square-lattice Ising model at its critical To test this possibility, we implemented a scalar hybrid
temperaturdl .. The Ising model has traditionally been used algorithm that combines the Metropolis and Wolff algo-
to test new simulation algorithms and data analysis techrithms. Simulations were performed on IBM RISC/6000,
nigues because of its simplicity and the exact finite- andDEC Alpha, PC Linux, and SGI power challenge worksta-
infinite-system solutions in the two-dimensional modeltions. The spins were stored as bit variables, with up to 32
[20,21. Because of the large amount of work done with thespin variables packed into a single computer w@8|. Note
Ising model, there exist several different simulation algo-that the Metropolis algorithm can take advantage of this
rithms for it. These can be broken up into two major classespacking arrangement by effectively updating many spins in
(1) single-spin update algorithms, including Metropolis, heatparallel using multispin coding techniques. This will result in
bath, and microcanonical algorithms, af®) cluster algo- substantial improvement in performance for increasing sys-
rithms, including the Swendsen-Wang3] and Wolff algo-  tem size until all 32 bits are fille¢for L=64 in this imple-
rithms[14]. We will concentrate on two of these algorithms mentation. While the Wolff algorithm cannot make full use
[22]: Metropolis[12] and Wolff [14]. of the multispin coding, it does benefit from the smaller

Each of these algorithms has its strengths and weakmemory requirements of the packed-spin representation.
nesses. The Metropolis algorithm is very efficient at equili-(Smaller memory means that more of the system can be
brating short-range fluctuations in the system, and there existored in the computer’s cache memory, which results in
highly optimized multispin coding implementations of the much better performancge.
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particle in units of the exchange interactidricircles and the spe- Fraction of Metropolis

cific heatc in units ofkg /J? (squareswith the fraction of Metropo-
lis spin flips. Results shown are for tlde=2 spin-1/2 Ising model
on anL XL square lattice with.=16 atT=T,. The dashed lines
represent the exact solution.

FIG. 2. Variation of the relative efficiencicompared to pure
Wolff) of the hybrid algorithm as measured from the results for the
magnetizatiorM (filled symbolg and for the energ§ (open sym-
bols) with the fraction of Metropolis spin flips for different lattice
sizes. Results shown are for tle=2 spin-1/2 Ising model aT

The random-number generators used for the simulatiorr T.onLXL lattices. Where not shown, the error bars are smaller
must be chosen with great care, especially for the Wolff althan the symbol size.
gorithm [27]. After performing extensive tests of several
generators, we selected the fo||owing as being the fasteﬂroved. For the magnetization the relative efficiency of the
random-number generators that would give us the corredtybrid algorithm, with(50-80 % Metropolis flips added, is
answer within the precision of our testing. For the Wolff about 30% greater than for Wolff alone, as can be seen from
algorithm, we used a combination generator by 'Ecyp&  Fig. 2. It is surprising that even fdr=64, where the Me-
that was recommended as a “perfect” random number genU‘OpO"S algorithm is much less efficient than the Wolff algo-
erator in the numerical recipes column in computers in Phystithm, the hybrid is significantly more efficient. Although for
ics [39]. With this program, we can produce a random num-pure Metropolis, the relative performance becomes markedly
ber in 840.2 nsec on an SGI power challenge workstatiofvorse as the lattice size increases, the same is not true for the
with a 194-MHz R10000 processor. For the Metropolis parthybrid algorithm. For the internal energy the relative effi-
of the simulation, we used a faster, shift-register generatogiency, also shown in Fig. 2, is much better still for the
R1279, which can produce a random number in 21.4 nseBybrid algorithm, by more than a factor of 2.

[40].

To see how the hybrid algorithm behaves when poor ran-
dom numbers are used, we ran a series of simulations delib-
erately using a bad random-number generator for the Wolff For models with higher values of spin, not only are Monte
algorithm. We thus used the R250 shift-register generato€arlo simulations, as well as specific algorithms, less ubig-
[35] which is known to introduce significant systematic er- uitous than for their two-state counterpart, but no exact so-
rors for thed=2 Ising model[27]. We performed hybrid lution is still available for their critical temperatures. Thus,
updates consisting of one Wolff update followed by 0, 1, 2,the basic ideas of the last section need to be extended to
3, and 4 Metropolis updateA simulation consisting of only more general models, e.g., the spin-3/2 Ising model, where
Metropolis was also performed for completeng§®r each  each spin state can assume value3/2, *=1/2. Although
hybrid, 16 independent simulations consisting 6 B° hy-  some spin-141—-45 and spin-3/446-50 models have al-
brid steps were performed. The results for 16 are shown ready been studied through Metropolis technique and cluster
in Fig. 1 for the energy and specific heat. For the internakpin flipping[51], there is still a lack of a detailed analysis of
energy the Wolff algorithm yields the wrong answer by anthe statistical and systematic errors even in the simple Ising
amount that is more than 35 times the calculated error balimit. So, before starting to implement a hybrid algorithm to
With the inclusion of 50% of Metropolis flips this error is this model it is interesting to see first what one gets with
reduced by a factor of 10, and with 80% Metropolis flips, nosingle-spin flipping procedures.
discernible error is seen. Very much the same behavior is To analyze the statistical errors of some observable ther-
seen in the specific heat, although the rate of convergence toodynamic quantityd, we first applied just the Metropolis
the correct answer is slightly different. algorithm to the spin-3/2 Ising model. We ran 6:020°

Not only are the results more correct if the different flip- Monte Carlo stepgMCS) per spin with 2<10* configura-
ping mechanisms are mixed, but the performance is also intions discarded for thermalization on different lattice sizes

Ill. HYBRID ALGORITHM: SPIN-3 /2 ISING MODEL
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FIG. 3. Relative error of the magnetizatio, its cumulanty, FIG. 4. Magnetization cumulant as a function of reduced
energyE, and quadrupol® as a function of lattice size for the o\ heratire for the d=2 spin-3/2 Ising model with. = 128. All
?:2 spi|n-3/2 Ising model. Filled symbols_ were taken with the ya13 were obtained from histograms takert-aB8.29 (close to the
perfect” random-number generatdi38], while the empty ones ey temperature The numbers in the legends stand for MCS.
with the congruential generator. Full lines and dashed lines are g),o, squares and open diamonds are the results for Metropolis with
guide to the eyes. congruential random-number generatME-C). Full squares and
. full diamonds are the results with the “perfect” generatbtE-P).
L(8=<L=128) and using the “perfect” random-number gen- ppen circles and full circles are the results for the hybrid algorithm
erator [38]. We measured the enerdy, magnetizationM,  ith five Wolff steps using the congruentié5-C) and perfect
fourth-order cumulant of the magnetizatibh and the quad-  (H5-p) generators, respectivelithese data are almost collapsed
rupole momen@ (the mean value of the square of the spins  within the resolution of this figuje The magnitudes of the error
Typical results of the relative erraxA/(A) for different lat-  bars with the Metropolis algorithm for;310° and 6x 10° MCS are
tice sizesL are shown in Fig. 3 at=kgT/J=3.29, a value indicated. For the hybrid algorithm the errors are much smaller than
close to the critical temperature. Using “coarse grainih’  the corresponding symbol sizes.
we have estimated A through
states generated for this lattice size is more pronounced by
(AA)2=((A%)—(A)?)IN, using the “perfect” random generatgnote that the mean
values ofU with 6x10° MCS and “perfect” generator are
for large enoughN, where we divided our data int® comparable to those with>310° MCS and the congruential
=(MCS)/n bins of different lengths (n ranging from 5 to  one although both converge to the same limit as the number
10°). The relative error in the magnetization and its cumulantof MCS gets very large. Within the error bars we also notice
increases ak increases while for the energy and the quad-almost no systematic error due to the use of different
rupole moment it stays almost constant. In terms of differentandom-number generators, in contrast to the case of the
degrees of self-averagin@/ and U are non-self-averaging Wolff algorithm which, with a bad random-number generator
while E and Q exhibit a lack of self-averagin@he number  for the spin-1/2 model, gives wrong results for the energy
of “effectively” independent measurements through theand specific heaisee Fig. 1. The same qualitative behavior
computation of the correlation timeis certainly necessary of Fig. 4 (large error bars and a strong dependence of the
[8] for a more detailed analysis of the errors. This is, how-cumulant with the number of MQSs also seen for other
ever, outside the scope of the present wolke have also lattice sized.. Even by substantially increasing the MCS per
noted no significant changes in the errors by using differenspin one still gets large errors, mainly for the magnetization
random-number generators, even taking the poorer congrand its cumulantsee also Fig. 8
ential one, and the data are also depicted in Fig. 3. Figure 4 We show in Fig. 5 the reduced pseudocritical temperature
shows the results of the magnetization cumuldras a func-  t. as a function ofL = (in fact L~ *, wherev=1 for the
tion of temperature for different MCS for the lattice size two-dimensional Ising universality clgsebtained from the
=128. Here, we have used the histogram techniqug, at crossings of the fourth-order cumulant of the magnetization
=3.29 in order to obtain estimates for other values of tem+for different values oL using just the Metropolis algorithm.
peratures close t . It is worthwhile to analyze such behav- Each point in that figure represents the crossing point of the
ior since we will use the crossings of the cumulabtso  cumulantU, of the lattice size 1& L<128 with the corre-
locate the critical temperature of the present model. Besidesponding cumulant of the smallest lattitk. Only a poor
having large error bars one can see that the mean value of tlestimate of the critical reduced temperature can be achieved
cumulant is strongly dependent on the number of MCS useth this case, which can be ascribed to the large error bars
to obtain the statistics. The dependence with the number ajbtained in computindJ, as well as its strong dependence
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of lattice sizeL " ". Results are obtained from the crossings of the egponding saturated valuestat0. Results are for thd=2 spin-

fourth-order cumulant of the magnetization using just the Metropo—;» Ising model. The dashed line represents the exact solution.
lis algorithm with differentL for the d=2 spin-3/2 Ising model.

Circles are the results with perfect random gener@g-P) and
squares with congruentigME-C). For clarity, the errors in the
congruential data are not shovithey are, however, of the same
order as in the perfect cgse

just a generalization of the bond probabilities activation for
systems with more degrees of freedom, the latter is really a
problem since we can not generate all possible configura-
tions for the model. A mixed cluster algorithm has already
) . ) been proposed to overcome such a nonergodicity in the case
on the number of MCS taken in the statistics. In particular,yf o spin-1 Blume-Emery-Griffths mod$1]. However, a
we havet.=3.288(1) with perfect and.=3.287(1) with  ara) hybridization procedure, based on the discussion of
congruential random-number generators which are, even sg,q |ast section, and also from embedding algoriti&a]
comparable to the more recent series expansion regult proposed to study of spin-1 moddi4] can be worked out
=3.2878(22)52]. We can see that, in general, no systematic, o by simply alternating one Metropolis sweep wth
error dug to raqdom-number generator is observed for they s steps wherep, in principle, can depend on the system
Metropolis algorithm. Moreover, within the error bars, Very gize The inclusion of alternate single-spin-flip sweeps will
similar results are also obtained by running the symmetrigyake this hybrid algorithm ergodic and much simpler than a
heat bath single spin-flip procedure. possible generalization of the mixed cluster procedure to the
It is clear that one way to improve the accuracy of theyegent spin-3/2 model. In order to test the efficiency of this
location of the critical temperature with Metropolis can be hybrid algorithm we have done extensive simulations for the
done by increasing the MCS in order to achieve better star _ 4 |attice where we can compare the results of the simu-
tistics. This will require, of course, much more computer|,sinns with the exact ones. We ran a total oft & hybrid
time, mainly for large lattice sizes. We can, however, use thg,~g per spins each one includimgWolffs intercalated by
results of the preceding section in order to construct a hybridh,e \etropolis sweep. The results are shown in Fig. 6 for the
algorithm where, with not much extra computer time, MOrénetect random generator. One can readily see that all the
precise results could be obtained. The first step is thus tfuqits are in general compatible to the exact ones within the
implement a Wolff algorithm for this model. In a straightfor- error bars. However, by including some Wolff steps the mean

ward way, this implementation can be done by activating, 5| es initially oscillate for smalp, have a better agreement
bonds between parallel nearest-neighbors sgjmdS; ac- o b5 and finally deviate for largp. We also note that the

cording to the probabilityp(K;j) =1—exp(~2K;SS) and,  grors are almost the same f@=0 and p=9 and are

when the full cluster has been activated, all its spins argyiqpty smaller aroungp~5. The slight deviation of the er-
reversed. This procedure has, however, two main differenc r as a function op reflects the fact that we have a reason-

regarding the spin-1/2 systems that we have to keep in mind e numpber of MCS per spin to obtain a good statistics for
(i) now, the probabilityp(K;;) depends on the particular con- his' small lattice, even with just the Metropolis algorithm
figuration of the parallel spins and can have three pOSSIbIIIUhiS is not the case for larger values lof as we shall see
ties, depending on wheth¢g S} are{33}, {33}, and{33 below). Moreover, the worse results for large valuepatan
(and also the corresponding reversed configuralidithis  be ascribed to the nonergodicity of the present simple Wolff
procedure alone is not ergodic in the sense that it does natigorithm (nothing is gained by increasing the number of
take into account transitions between spin states with differwolff steps since we get stuck in the configurations having
ent spin magnitudeét keeps fixed the number of § and  the same number of 2 and +  sping. The overall picture
=3 spins in each configuration and, for instance, the quadthen suggests the use of this hybrid algorithm with 5
rupoIeQ=EiS2 is always a constapntWhile the former is  (althoughp can also vary withL). In order to test this as-
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FIG. 7. Relative error as a function of lattice size for the mag-sition U*. The straight line corresponds to a linear fit of the data.

netization M (squarey its cumulantU (circles, energyE (dia-

mondg, and quadrupol€ (triangles with the hybrid algorithm and for L=128 are in fact much smaller than the symbol sizes

p=>5. Filled symbols have been obtained by using the congruentiaJ‘-0 get this same precision with only Metropolis one would

generator, .and open Symb(.)lS by using t.he perfect one ilthe -0 1o compute an order of &@onfigurations for this lat-

Spin-3/2 Ising model. The lines are a guide for the eyes. tice size. The relative error of the energy, magnetization and
its cumulant, and the quadrupole for other valued_cdre

sumption we applied this procedure to the=128 lattice  shown in Fig. 7. While now they are almost constant Nbr
(and close to the critical temperathi@nd obtained the mag- andU (exhibiting lack of self-averagingthey decrease fdg
netization cumulant) with five Wolff steps. The correspond- andQ (behaving now as self-averaging quantitidsis also

ing results are also shown in Fig. 4. There is, in this case, nimportant to notice that the hybridization process is again
sensitive difference in the data by taking<30® or 6x 10° almost insensitive to the quality of the random-number gen-
MCS with the hybrid algorithm. Surprisingly, the statistical erator. The above results strongly indicgte5 as a good
errors are now almost two orders of magnitude smaller thafrial also for other lattice sizes.

those with just the Metropolis algorithfthe errors in Fig. 4 In Fig. 8 we present the reduced pseudocritical tempera-
turet, as a function oL ~* obtained from the hybrid algo-

rithm described above with the perfect random generator

3.298
e through the crossings of the fourth-order cumulant of the
B magnetizatiorJ, . It was possible, in this case, to get a good
3.296 |
15
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FIG. 8. Pseudocritical temperaturgeas a function of the inverse 2 %& 5 §
of lattice size obtained from the crossings of the fourth-order cu- } b mmpmn @€ i
mulant of the magnetization with differeit The three sets of the 00, = o5 5 -~
filled symbols have been obtained according to the hybrid algorithm ™ o BLPM, ’ :

with perfect random number generator by considering the crossings
of Uy <10 With Ug, Uy, andU ¢, respectively. The three sets FIG. 10. P* as a function ob,L#”M_ at T, for the spin-1/2,

of open symbols have been obtained according to the hybrid algo-l, -3/2 Ising models with lattice size=32. The simulations have

rithm with congruential random-number generator by consideringoeen done at the exact value ©f for spin-1/2, T.=1.6935 ob-

the crossings o, <19 With Ug, Uq,, andU g, respectively.  tained from series expansions for spifi54], and our present result
for spin 3/2.
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resolution from crossings of 24L <128 with three different ity of the results. Another advantage is that efficient, parallel
smaller lattices, namely)g, U;,, andU,4. The quality of  implementation of the hybrid algorithm on distributed
the results are now apparent and yields the extrapolate@emory machines is straightforward. A Wolff process run-
value t,=3.287997). Just for completeness, in Fig. 8 we Ning on one processor can “feed” states to other processors
also give the corresponding values by taking the congruentighat then perform multiple Metropolis updates. The number
generator with the present hybrid algorithm. As it is faster,0f Metropolis updates can be varied to maximize load bal-
we were able to use, with the same computing time, latticedNCing- Data are gathered together from all states that have
as large a4 =192 to gett.=3.287 897). We have then, so been generated and then used to construct histograms. This

far, the best estimate for the critical temperature of the twoprpcedure can be enhanced still W”hef by the inclusion of
dimensional spin-3/2 Ising model; = 3.287 947) microcanonical updates that require no random numbers.

. . . One hybrid update would then consist of, e.g., one Wolff
Itis worthwhile now to address some comments regardln% date plus five Metropolis updates plus ten microcanonical
the universality of these models. Regardless the number g P P P P P

states each spin can assumegdadimensional systems are in Updates.
SP : . : Y . Although we have described hybrid algorithms for one of
the same(lsing) universality class. This fact is apparent in

Figs. 5 and 8(mainly the latter onewhere the temperatures t_he simplest models in statistical mechanﬁts;ng), we be-
g . : Yo lieve that the lessons drawn from these studies will be more
are all along a straight line as a function lof " with v

. ? . . broadly applicable. For example, continuous spin systems
=1 in two dimensions. However, two more universal quan- y app P P Y

tities can be readily observed from the present simulations, 2 be(randomly projected onto Ising models that can be

First, the magnetization fourth-order cumulddt at the easily simulated using these hybrid algorithms. Histogram
transition temperature can also be estimated from our data
give U*=0.6141), a value expected fat=2 Ising systems

undergoing a second-order phase transition. This resu
comes from Fig. 9 where each point was obtained by fiing will be required for each study. Furthermore, these single

at our gstimatec and looking t'he cum'ulant there for differ- ensemble hybrid methods can be combined with other algo-

ent lattices. _Secoqd, a qpantlty that is StUd'e.d Ie_ss often, thms to further improve performance. For the Ising model

g’f bplr_oﬁt,)f‘,\a'“ty #ls;r|t;ut|;3n of the hmagpetlzatltotz/lL, i the microcanonical method is extremely fast and can be eas-
(bo 1) which, for large enough systems at the criti- ily included. For a classical Heisenberg model, the overre-

c_al temperature IS a universal functiggb—57. In th'.s €qua-  |axation method provides an effective microcanonical simu-
tion b, is a nonuniversal constant chosen to give a unity tion component to a hybrid algorithm

variance for the distributio* . Figure 10 shows the fixed- In summary, we have demonstrated that hybrid Monte
point order parameter distribution for the t\No—dimensionaIQ,m0 spin-flip élgorithms which include “slower” Metropo-
Ising universali.ty class obtained from mo.dels'with spin 1/2,;¢ steps, can be made t’o be effectively faster than cluster-
1, 3/2 at the critical temperature and lattice size 32. For  fjinning algorithms. Furthermore, and perhaps more signifi-
each model 10steps were performed with Metropolis algo- cantly, they yield substantially more accurate results than
rlthrr_l and using the R1279 random-number generator. Th§yeg'the simple Wolff algorithrtfor the spin-1/2 modglor
quality of this match clearly reveals the hallmark of ¢ gjngle Metropolis algorithm because the alternation of updat-
distribution for the Ising universality class. ing methods breaks up random-number correlations.

analysis of the data can also be used in a similar fashion to
tr?roduce extremely high resolution results. Of course, the
[elative performance of each component of the hybrid algo-
fthm will depend upon the specific model, so that “tuning”
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